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The minimal principle for structure determination from single-crystal X-ray

diffraction measurements has recently been formulated as an integer linear

optimization model for the case of centrosymmetric structures. Solution of this

model via established combinatorial branch-and-bound algorithms provides the

true global minimum of the minimal principle while operating exclusively in

reciprocal space. However, integer programming techniques may require an

exponential number of iterations to exhaust the search space. In this paper, a

new approach is developed to solve the integer minimal principle to global

optimality without requiring the solution of an optimization problem. Instead,

properties of the solution of the optimization problem, as observed in a large

number of computational experiments, are exploited in order to reduce the

optimization formulation to a system of linear equations in the number field of

two elements (F2). Two specialized Gaussian elimination algorithms are then

developed to solve this system of equations in polynomial time in the number of

atoms. Computational results on a collection of 38 structures demonstrate that

the proposed approach provides very fast and accurate solutions to the phase

problem for centrosymmetric structures. This approach also provided much

better crystallographic R values than SHELXS for all 38 structures tested.

1. Introduction

Direct methods have been used extensively for structure

determination for over 50 years (Hauptman & Karle, 1953;

Karle & Karle, 1966; Germain & Woolfson, 1968; Debaerde-

maeker & Woolfson, 1983; Bricogne, 1984; Sheldrick, 1990;

Giacovazzo, 1998; Hauptman et al., 1999; Massa, 2000). Many

of these methods rely on the minimal principle hypothesis for

the phase problem, namely that a certain function of the

phases is minimized only by the set of phases corresponding to

the crystal structure (Debaerdemaeker & Woolfson, 1983).

Recently, Vaia & Sahinidis (2003) provided an integer

programming formulation of the minimal principle for

centrosymmetric structures. With appropriate choice of origin,

the center of symmetry requires the phases to take a value 0 or

�. This feature of the problem was exploited by Vaia &

Sahinidis (2003) in order to avoid trigonometric terms in the

original minimal principle formulation of Debaerdemaeker &

Woolfson (1983). With the introduction of a suitable set of

binary variables, the original nonlinear and nonconvex opti-

mization problem was reduced to a linear integer program-

ming problem. This integer minimal principle can be solved to

global optimality via established combinatorial optimization

techniques. It is well known that integer programs are, in

general, NP-hard (Nemhauser & Wolsey, 1988), thus requiring

exponential computing resources for solution in the worst

case. Yet computational experience with the integer minimal

principle model indicates that the gap between its optimal

solution and its linear programming relaxation is zero. As this

linear programming relaxation typically exhibits a fractional

solution, Vaia & Sahinidis (2003) resorted to a branch-and-

bound algorithm for the solution of the integer minimal

principle.

In this paper, we develop an approach that solves the

integer minimal principle without the use of a branch-and-

bound integer programming algorithm. Our algorithm is

polynomial in the number of atoms in the structure. In parti-

cular, under certain assumptions, we reduce the integer

minimal principle model to a system of linear equations. Since

this system involves only binary variables, this paper develops

a division- and multiplication-free variant of the Gauss–

Jordan elimination algorithm that utilizes only binary arith-

metic. In addition, we develop a Gaussian elimination algor-

ithm that involves a sparse matrix implementation combined

with a pivot rule that reduces computer memory requirements.

This results in fast algorithms for solving the phase problem

for centrosymmetric structures.

We solve known structures from the literature with the

developed polynomial-time algorithms and compare this

approach to using state-of-the-art commercial integer

programming optimization software to solve the integer

minimal principle. These computations demonstrate that the



algorithms developed in this paper are more efficient in terms

of solution time and computer memory requirements by

several orders of magnitude. We also solve the same test

structures with SHELXS and find that not all of them are

solved by SHELXS unless a considerable amount of user

intervention and CPU time are expended.

A very important feature of the approaches developed in

this paper is that they do not require the solution of an opti-

mization problem but rely exclusively on easily implementable

linear algebra techniques. As a result, the proposed algorithms

can be readily incorporated in crystallographic software.

2. Integer programming formulation of the minimal
principle

Consider a single-crystal X-ray experiment that provides the

normalized structure factor amplitudes, jEmj, for

m ¼ 1; . . . ;M reflections, each of which corresponds to a

reciprocal-lattice vector hm and phase �m. The triplet invari-

ants !t are defined as (Hauptman & Karle, 1953)

!t ¼ �mt
þ �m0t

þ �m00t
t ¼ 1; . . . ;T;

where hmt
þ hm0t

þ hm00t
¼ 0 for all t ¼ 1; . . . ;T.

For centrosymmetric structures, since the triplet invariants

!t obtain values from the set f0; �; 2�; 3�g, the cosine of the

triplet invariants can only take values from the set f�1; 1g:
Based on this observation, Vaia & Sahinidis (2003) proposed

the following integer minimal principle formulation for

solving the phase problem for centrosymmetric structures.

Indices

m index used for reflections (m ¼ 1; . . . ;M).

t index used for triplet invariants (t ¼ 1; . . . ;T).

Variables

�m phase of the mth reflection.

’m normalized phase of the mth reflection equal to �m=�.

!t triplet invariant defined by !t ¼ �mt
þ �m0t

þ �m00t
,

where hmt
þ hm0t

þ hm00t
¼ 0.

�t binary decision variable.

�t binary decision variable equal to ð1� cos!tÞ=2.

Parameters

M number of reflections.

n number of atoms in the unit cell.

T number of invariants.

jEmj structure-factor amplitude associated with reflection

hm.

At constant equal to 2n�1=2jEmt
jjEm0t
jjEm00t
j.

!t conditional expected value of the cosine of the triplet

invariant, equal to I1ðAtÞ=I0ðAtÞ (Germain et al., 1970).

Model M1

min f ðbÞ ¼

PT
t¼1 At½4�t!t þ ð1þ !t

2 � 2!tÞ�
PT

t¼1 At

s:t: ’mt
þ ’m0t

þ ’m00t
¼ 2�t þ �t; t ¼ 1; . . . ;T ð1Þ

’m 2 f0; 1g; m ¼ 1; . . . ;M

�t; �t 2 f0; 1g; t ¼ 1; . . . ;T:

For each triplet invariant, the binary variables �t and �t on the

right-hand side of (1) force the sum of the phases on the left-

hand side of (1) to a value from the set f0; 1; 2; 3g. A zero

value of �t implies that the corresponding invariant !t equals 0

or 2�. A �t ¼ 1 implies that the corresponding !t equals � or

3�. As shown by Vaia & Sahinidis (2003), model M1 is

equivalent to the original minimal principle formulation of

Debaerdemaeker & Woolfson (1983) for the case of centro-

symmetric structures.

Let N denote the number of atoms in the chemical formula.

Computational results by Vaia & Sahinidis (2003) demon-

strated that the ratio N : M : T ¼ 1 : 10 : 100 balances

computational time versus quality of the solution for model

M1. This ratio will be used throughout this paper except for

cases when a sufficient number of strong reflections or triplet

invariants is unavailable (such cases will be clearly pointed

out). In all cases, the model is constructed by selecting the M

reflections with the largest Em values. These reflections are

subsequently used to generate T ¼ 10M triplet invariants.

The values of the phases are found by identifying a

nontrivial, i.e. nonzero, solution point of M1. Model M1 is a

constrained, linear, integer programming problem. In order to

solve M1 to global optimality, Vaia & Sahinidis (2003)

proposed a branch-and-bound combinatorial optimization

algorithm. In each iteration of the algorithm, a linear relaxa-

tion of M1 is solved whereby many (initially all) binary vari-

ables are allowed to take values in the continuous interval

½0; 1�. The search space is recursively partitioned into smaller

elements by restricting phases to 0 or 1. Each partition

element is bound below and further refined, when necessary.

Binary solutions found in the process provide upper bounds

for the optimal value of M1 and facilitate pruning those

partition elements whose lower bounds exceed the current

best upper bound. The algorithm terminates when all subsets

are eliminated. A more detailed discussion on the issues

concerning this type of combinatorial optimization algorithm,

including bounding and partitioning, can be found in

Nemhauser & Wolsey (1988).

The above integer programming approach was imple-

mented by Vaia & Sahinidis (2003) using commercial integer

programming software and may require a computational

effort that grows exponential in the number of phases. Our

objective in the sequel is to develop a fast solution procedure

for solving M1 to global optimality without requiring an

exponential algorithm and commercial software.

3. Reduction to a system of equations

Consider the continuous relaxation of M1, which is obtained

by allowing each variable �t, �t and ’mt
to take values in ½0; 1�

instead of f0; 1g. This system can be expected to have a

minimum when �t ¼ 0 for all t ¼ 1; . . . ;T. This is because

!t > 0 and the system of equations in (1) is under-determined

(it has T equations and 2T þM unknowns). Therefore, the

integer programming problem has a minimum with �t ¼ 0 for

all t ¼ 1; . . . ;T if the system of equations in (1) has an integer

solution with �t ¼ 0, t ¼ 1; . . . ;T. In this case, instead of
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solving the integer programming problem, we can alter-

natively solve the system of equations in (1) for the phases

after fixing �t to 0 for all t ¼ 1; . . . ;T. Therefore, the system of

linear equations to be solved is the following.

Model M2

’mt
þ ’m0t

þ ’m00t
¼ 2�t t ¼ 1; . . . ;T ð2Þ

’m 2 f0; 1g m ¼ 1; . . . ;M

�t 2 f0; 1g t ¼ 1; . . . ;T:

This is a system of T equations in T þM unknowns. Its linear

relaxation always has a solution, although not necessarily

integral. Since all the variables are binary, one can solve this

system in the F2 field – this is the field of integers modulo 2

with elements from f0; 1g. In this field, odd numbers are

equivalent to 1 and even numbers are equivalent to 0.

Therefore, the right-hand side of (2) is equivalent to zero.

Consequently, model M2 is equivalent to the following model

in F2.

Model M3

’mt
þ ’m0t

þ ’m00t
� 0 mod 2 t ¼ 1; . . . ;T ð3Þ

’m 2 f0; 1g m ¼ 1; . . . ;M:

Therefore, all that is needed in order to solve M1 is to identify

a nonzero element of the null space of the matrix determined

by the left-hand side of (3) in F2.

4. Polynomial-time algorithms

Model M3 is a system of T equations in M unknowns. Since

typically T ¼ 10M, this homogeneous system of linear equa-

tions is over-determined. Commercial linear algebra packages

can be used to find a nonzero solution of such systems.

For instance, the MATHEMATICA function NullSpace[M,

Modulus->2] provides the entire null space of a matrix M in

F2. Below, two highly efficient specialized algorithms are

proposed for finding a single nonzero element of this null

space: a variant of the Gauss–Jordan elimination algorithm

and a Gaussian elimination algorithm. The latter exploits the

sparsity of the constraint matrix and uses the Markowitz rule

(Markowitz, 1957) to select the pivot element.

4.1. Gauss–Jordan algorithm

In this variant of the Gauss–Jordan algorithm, all the

elements above and below the diagonal are eliminated. We

allow for row pivoting when the diagonal element is zero. If

there is no nonzero element at or below the diagonal of a

given column, then the phase corresponding to this column is a

free variable. This means that we can assign any value (0 or 1)

to this variable and still have a feasible solution to M3. If, after

the algorithm is applied to all diagonal elements, all the entries

of the constraint matrix from the ðM þ 1Þth row and below are

zero, then the system has a solution. If there is at least one free

variable, then the system has a nonzero solution. To find the

values of the phases, we assign arbitrarily a value 0 or 1 to each

free variable and continue with back substitution. The free

variables in M3 correspond to degrees of freedom in selecting

different origins for the structure. Fig. 1 illustrates the

constraint matrix at termination for a system of equations with

a nonzero solution.

All variables are binary and the system is solved in the F2

field. This permits a very fast implementation of the algorithm

because no multiplication or division is necessary. Indeed,

consider the rth step of the algorithm, where the diagonal

element is in the rth row and rth column and we must elim-

inate a nonzero element at the rth column and pth row. If we

add the rth row to the pth row while noting that, in F2, even

numbers are equivalent to zero, then we will have zeroed the

element at the pth row and rth column without any multi-

plication or division. In fact, we can use logical operands to

perform every calculation involved in this algorithm. This is

clearly a very fast polynomial time algorithm for solving M1 to

global optimality. In particular, the computational complexity

of this algorithm is OðM2TÞ.

4.2. Gaussian elimination algorithm with Markowitz score

The Gauss–Jordan algorithm described in the previous

section does not take into account the sparsity of the

constraint matrix in (3). Since there are at most three nonzero

elements in each row of the matrix, a sparse matrix imple-

mentation would make a huge difference in terms of the

memory required for solving the system. Therefore, a Gaus-

sian algorithm is developed that employs the sparsity-preser-

ving pivot selection rule of Markowitz (1957), combined with a

sparse matrix implementation. At a given iteration of the

Gaussian elimination algorithm, the Markowitz rule selects as

pivot element the ijth element with the minimum value of

dij ¼ ðri � 1Þðcj � 1Þ, where ri and cj denote the number of

nonzeros in row i and column j, respectively, in the remaining

part of the matrix.

The algorithm operates on a sparse matrix data structure

describing (3). In particular, only the positions of the 1’s are

stored in terms of a ‘column-major’ format, whereby, for each

column, the rows of the nonzero elements are stored in a
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Figure 1
The constraint matrix after termination of the Gauss-Jordan elimination
algorithm for a system with a nonzero solution.



single vector. A second vector provides an index to the first

vector denoting the beginning positions of the nonzero

elements of columns of (3). The following notation will be

used to describe this algorithm.

Indices

ii index of the diagonal element under consideration.

jmin the column of the element with the smallest Marko-

witz score.

imin the position in the row indices vector of the element

with the smallest Markowitz score.

Parameters

ia integer vector containing the row indices of the nonzero

elements in each column.

ja integer vector providing the next column start.

v integer vector providing the position of each variable.

c number of nonzero elements in the column from the iith

to the Tth row.

r number of nonzero elements in the row from the iith to

the Mth column.

d Markowitz score [equals ðr� 1Þðc� 1Þ�.

dmin minimum Markowitz score.

Algorithm
* Step 0 (Initialization). Set ii � 1. Set vk ¼ k for

k ¼ 1; . . . ;M:
* Step 1 (Pivot element selection). For each element in

vector ia from the iith to the Mth column and from the iith to

the Tth row, find c. If c ¼ 1, this is the pivot element; update

imin and jmin and go to Step 2. Else, if c 6¼ 1, find r for this

element. Set d ¼ ðr� 1Þðc� 1Þ. If d ¼ 0, this is the pivot

element; update imin, jmin and go to Step 2. Else, if d< dmin, set

d ¼ dmin and update imin and jmin. If no pivot element is found,

go to Step 5.
* Step 2 (Switch columns). If jmin 6¼ ii, then switch the pivot

column ( jmin) with the iith column.
* Step 3 (Switch rows). If iaimin

6¼ ii, then switch the pivot

row iaimin
with the iith row.

* Step 4 (Gaussian elimination). For every column after the

iith column that includes the pivot element, combine the

elements of that column with the elements of the iith column.

If an element is present in both columns, then it is not

recorded. Update ja.
* Step 5 (Back substitution). If no more pivot elements can

be found, then set values arbitrarily to the free variables.

Progressively calculate the values of the unknown variables

from the values of the currently known variables. Use vector v

to map the variables after pivoting to the original variables.

The computational complexity of this algorithm is OðM2TÞ,

i.e. the same as that of the Gauss–Jordan algorithm. Even

though the sparse implementation is more involved, it reduces

enormously the amount of computer memory required with

respect to the Gauss–Jordan algorithm.

4.3. Connection with Sayre’s equation

Only if (3) does not have a nontrivial solution would one

need to solve the integer optimization problem in M1. In order

for the system of equations in (3) to have a nonzero solution

point, the number of phases with a nonzero value for each

constraint should be either zero or exactly two. This means

that, if there is a phase in the tth constraint with a value

’mt
¼ 1, then there should also be another phase in the same

constraint with a value ’m0t
¼ 1 or ’m00t

¼ 1 but not all three of

these phases should have a value of 1. Sayre’s equation (Sayre,

1952; Hughes, 1953) provides the average value of the product

hEhm0
Ehm00
ihm0
¼ 1=N2Ehm

for the reciprocal vectors hm, hm0 and hm00 , which demonstrates

that (3) has a solution at least for the phases corresponding to

strong reflections.

4.4. Implementation

In our implementation, we begin by using the LEVY and

EVAL programs (Blessing, 1989) to obtain the normalized

structure-factor amplitudes jEmj, m ¼ 1; . . . ;M. Next, a global

solution of the integer minimal principle M1 is obtained by

solving M3 with the proposed polynomial algorithms. This step

provides the values of the phases. Then, a modified version of

the CRUNCH system (de Gelder et al., 1993) is used to

calculate an E map, perform the peak-picking procedure and

calculate the atomic coordinates corresponding to the phases

that solve M1.

5. Computational results

In this section, we first compare the proposed variant of the

Gauss–Jordan algorithm with the optimization software

CPLEX7.0 (ILOG, 2000), which employs a branch-and-bound

optimization strategy optimization. The objective of this

comparison is to demonstrate the benefits of using the

proposed algorithms. We do so by solving a large number of

structures. Then, we present computational results on a

collection of structures from the literature to demonstrate that

the suggested algorithms are successful in solving difficult

structures. Subsequently, using one of the proposed algor-

ithms, we experiment with different data resolutions to iden-

tify the limits of the minimal principle with respect to data

resolution. Finally, we compare our approach to the popular

SHELXS phasing software. All runs reported below were

performed on a 1.5 GHz Dell Xeon workstation with 1 GB

memory.

5.1. Comparison with optimization software

In this section, we compare the computational time for the

branch-and-bound mixed-integer programming (MIP) algor-

ithm implemented in CPLEX, the Gauss–Jordan polynomial

time algorithm (PA1) and the Gaussian elimination algorithm

with the sparse matrix implementation (PA2). We solve the

collection of 18 structures solved in Vaia & Sahinidis (2003),

where details are provided about each structure and the

source of the reflection data. In Table 1, we provide the

number of atoms (N) in the chemical formula, reflections used

(M), triplet invariants generated (T) and total number of

variables in each model.
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In Table 2, we report the global optimal value (f ) of the

minimal principle, along with the running time in s for MIP,

PA1 and PA2. The branch-and-bound algorithm as well as our

PA1 and PA2 algorithms provided exactly the same global

minimum values (f ) of the minimal principle model. As shown

in Table 2, the PA1 and PA2 algorithms are, respectively, an

average of 34 and 45 times faster than the MIP. The running

time for PA1 averages 4 s. Even for the largest structure

(structure 8), the running time of PA1 does not exceed 25 s.

Similarly, the running time for PA2 averages 3 s. PA2 is faster

than PA1 since it minimizes fill-in and the number of pivots

required for solution. For MIP, there are cases in which smaller

structures require larger running times than larger structures.

This is because the running time for the MIP depends not only

on the model dimensions but also on the selection of the

origin. On the other hand, the CPU time for both polynomial

time algorithms is independent of the size of the structure as

illustrated in Fig. 2. Note also that the integer optimization

model M1 involves 2T more variables than the set of equa-

tions M3, which results in much higher computer memory

requirements for the MIP.

5.2. Application to an additional collection of structures

We have solved 20 additional structures by applying the

PA1 and PA2 algorithms. For each of these structures, Table 3

provides the number of atoms (N) in the chemical formula, the

space group, the number of molecules in the unit cell (Z) and

the source of the data. The first 13 structures of this table are

structures reported in Acta Cryst. Sections C and E. The sizes

of these structures range from 41 to 119 atoms. The last seven

structures of Table 3 were obtained from various sources and

are considered as difficult structures either because of low-

resolution data or because of the presence of a highly disor-

dered solvent. The sizes of these structures range from 42 to

117 atoms.

Table 4 provides the number of phases (M) and invariants

(T) used in the system of equations M3. Even for the larger

structures, the number of variables in M3 is relatively small.

For instance, for structure 33, which has 110 atoms, model M3

has M ¼ 1100 variables and T ¼ 11 000 equations, while

model M1 has 2T þM ¼ 22 110 variables and T ¼ 11 000

equations. Table 4 also presents the minimal principle value f ,

the crystallographic coefficient R and the CPU s for each

structure. Even though there are thousands of equations

(exactly T) in the model, the running time for PA1 (tPA1) and

PA2 (tPA2) averages only 12 and 5 s, respectively. PA2 is faster

because it exploits sparsity of the constraint matrix in a way

that minimizes fill-in and subsequent Gaussian elimination

iterations.

The polynomial algorithms were successful in determining

all 20 structures. In all cases, they resulted in the same

objective function value as the linear programming relaxation

of M1. Our computational experience with all 38 structures

solved in this paper shows that, in all cases, there is a nonzero

solution point to M3 and, thus, application of the specialized

algorithms to the minimal principle model reveals the crystal
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Table 1
Model dimensions with MIP and polynomial algorithms.

Chemical structure Variables

No. Formula N M T MIP PA1/PA2

1 C50H66O6 �C3H7NO 61 610 6100 12810 6100
2 C30H22O6S 37 370 3700 7770 3700
3 C30H32N2O6 38 380 3800 7980 3800
4 C44H38O4 48 480 4800 10080 4800
5 C34H42B2N2O4 42 420 4200 8820 4200
6 C34H26N2O 37 370 3700 7770 3700
7 C5H12NO+

�

C28H37B6O10
�
�

0.5C4H10O

55.5 542 5500 11550 5500

8 3C40H32O2 �4C6H6 150 1378 13780 28938 13780
9 C42H56N2O2 46 460 4600 9660 4600

10 C36H62 36 360 3164 6688 3164
11 C17H19N3O2 22 220 2200 4620 2200
12 C10H19ClO 12 150 1500 3150 1500
13 C18H15NO3 22 220 2200 4620 2200
14 C13H14N2O3 18 220 1600 3420 1600
15 C41H78O11Si8 60 590 6000 12590 6000
16 C44H52N4 �C2H6O 51 510 5100 10710 5100
17 C12H10O3 15 200 2000 4200 2000
18 C24H12N6 �4CHCl3 52 520 5200 10920 5200

Table 2
Objective function value and CPU times with MIP, PA1, and PA2.

CPU time (s)

Structure f MIP PA1 PA2

1 0.0625 196 3 4
2 0.0351 83 3 3
3 0.0862 89 2 1
4 0.1347 254 3 2
5 0.0965 127 2 1
6 0.0586 112 3 2
7 0.0316 238 4 3
8 0.3594 28 25 6
9 0.0872 130 3 2

10 0.0193 74 6 6
11 0.0053 63 2 2
12 0.0016 10 1 1
13 0.0044 10 2 2
14 0.0243 16 1 1
15 0.0542 601 6 4
16 0.1258 261 5 3
17 0.0041 6 1 3
18 0.0351 134 3 2

Average 135 4 3
Standard deviation 143 5 2

Figure 2
Computational time (s) as a function of number of atoms N.



structure without the need to invoke a branch-and-bound

algorithm to solve M1.

5.3. Sensitivity to data resolution

For eight of the structures in Vaia & Sahinidis (2003)

(structures 1–8 of Table 1) with data resolution ranging from

0.76 to 0.842 Å, respectively, we have truncated the reflection

data to progressively lower their resolution to 0.9, 1.0, 1.1, 1.2

and 1.3 Å. Table 5 provides the R values based on the

normalized structure-factor amplitudes, and the fraction (k) of

the total number of independent atoms correctly identified for

these structures at the five different resolution values.

Since our algorithm provides the global solution to the

minimal principle model and there is no false minima issue, we

are able to identify unambiguously the resolution where the

minimal principle, in conjunction with the CRUNCH peak-

picking procedures, fails to separate atoms in the electron-

density map. In most of the cases, we were able to identify

correctly all the atoms in the asymmetric unit cell up to 1.2 Å

resolution. At resolution 1.3 Å, despite the fact that there was

an insufficient number of strong reflections and, therefore, we

had to rely on data with small E values, a significant fraction of

the structure was often identified. Yet these computational

experiments demonstrate that the minimal principle, in

conjunction with the CRUNCH peak-picking procedures, fails

at resolutions lower than approximately 1.2 to 1.3 Å.

5.4. Comparison to SHELXS

All 38 structures of Tables 1 and 3 were also tried with

SHELXS (Sheldrick, 1990). The results are reported in Table

6 in comparison with the results using PA2. As seen in this

table, PA2 takes an average of about 4 s over this collection of

compounds and so does SHELXS. In addition to the time

spent on PA2, our approach requires a relatively small amount

of time to be spent on the LEVY, EVAL and peak-searching

operations. As seen in Table 6, PA2 provides much better

crystallographic R values than SHELXS for all these

compounds. Furthermore, there are many cases for which the

crystallographic R values indicate that SHELXS was unable to

solve these structures. Refinement will most likely improve the

results from the application of SHELXS but no refinement

was used by PA2 either.

In all computations reported in Table 6, we used SHELXS

with default algorithmic options. A trained user could

certainly improve the performance of SHELXS via the

selection of different options. For instance, after solving

structure 13 with default SHELXS options, we set the values

of the SHELXS options ns, nE and np to two, two and four

times, respectively, the values used by SHELXS in the default

run. Doing so resulted in a much improved crystallographic R

value of 0.22 and a considerable increase of CPU time to 18 s.

According to Sheldrick (2005), only six structures (2, 32, 33,

35, 36 and 37) cannot be solved using SHELXS, at least

without time-consuming expert intervention, and all structures

can be solved with SHELXD but take at least ten times as long

as PA2.

Our interpretation of the results of these computational

experiments is that the higher CPU times required by the

SHELX codes are because these codes use stochastic global

optimization algorithms that do not exploit the mathematical

structure of the phase problem to the extent that deterministic

global optimization algorithms do. On the other hand, our

approach solves the integer minimal principle model to global

optimality via deterministic algorithms that do not require
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Table 3
Additional test problems.

Chemical structure
Space

No. Formula N Z group Reference

19 4C19H23N5O3 �2C2H6OS �3H2O 119 2 P�11 (a)
20 C33H59N11

8+
�8ClO4

�
�5H2O 89 2 P�11 (b)

21 C54H72O10 �CH4O 66 4 P21/c (c)
22 C51H59NO11S 64 4 P21/c (d)
23 C34H32N8O4S2 �3C5H5N 68 1 P�11 (e)
24 C39H47O4 �C6H16N+

�C2H3N 53 4 P21/c ( f )
25 C24H42N6

4+
�C10H2O8

4�
�6H2O 54 1 P�11 (g)

26 C16H38N4
2+
�2C8H4NO6

� 50 1 P�11 (h)
27 3C10H8N2 �2C6H4O6 60 1 P�11 (i)
28 C48H42 48 1 P�11 ( j)
29 C44H38O2 46 2 P21/c (k)
30 C47H32 47 2 P�11 (l)
31 C21H19N3O7 �2C3H7NO 41 2 P�11 (m)
32 C109H73N �CHCl3 114 4 P21/c (n)
33 C110H74 110 4 P�11 (o)
34 C83H82N8O20Cl6 117 2 P�11 (p)
35 C84H70N10O7 101 4 P21/n (p)
36 C51H44N5O8Cl3 67 2 P�11 (p)
37 C29H35N4O6Cl3 42 2 P�11 (p)
38 C36H48O9 44 4 P21/c (p)

References: (a) Hempel et al. (2000); (b) McKee & Morgan (2003); (c) Thuéry et al.
(2000); (d) Kim et al. (2000); (e) Chantrapromma et al. (2001); ( f ) Leverd et al. (2000); (g)
Zhu et al. (2002); (h) MacLean et al. (2002); (i) Cowan et al. (2001); ( j) Frampton et al.
(2000); (k) Robinson et al. (1999); (l) Perera et al. (2003); (m) Zou et al. (2003); (n) de
Graaff (2003); (o) Ho (2003); (p) de Gelder (2003).

Table 4
Model dimensions and computational results.

Structure N M T f R tPA1 tPA2

19 119 1190 11900 0.1057 0.12 45 12
20 89 890 8900 0.1194 0.14 13 8
21 66 660 6600 0.0547 0.07 7 4
22 64 640 6400 0.1163 0.15 9 3
23 68 680 6800 0.0669 0.15 10 10
24 53 530 5300 0.0356 0.05 7 3
25 54 540 5400 0.1776 0.04 3 2
26 50 500 5000 0.0568 0.08 4 3
27 60 600 6000 0.1546 0.03 4 3
28 48 480 4800 0.0837 0.03 3 2
29 46 460 4600 0.1362 0.13 2 1
30 47 470 4700 0.054 0.06 3 2
31 41 410 4100 0.062 0.14 2 1
32 114 1100 11000 0.202 0.17 24 5
33 110 1100 11000 0.0853 0.13 30 10
34 117 1170 11700 0.0534 0.07 31 9
35 101 1010 10100 0.1173 0.25 19 5
36 67 670 6700 0.1746 0.15 7 3
37 42 420 4200 0.1137 0.19 5 2
38 45 450 4500 0.0623 0.22 4 2

Average 12 5
Standard deviation 12 3



user intervention or multiple trials from different starting

points.

6. Conclusions

In this paper, we propose a new formulation of the integer

minimal principle previously developed for centrosymmetric

structures and we develop two specialized algorithms. These

algorithms not only take into account the special mathema-

tical structure of the minimal principle model but also go

further and, in accordance with Sayre’s equation, exploit the

theoretically expected characteristics of the phases them-

selves.

The solution of the minimal principle optimization problem

reduces to the solution of a system of linear equations that

involves a smaller number of variables than the integer

minimal principle. In order to solve this system of equations,

we developed two algorithms. The first algorithm is a variant

of the Gauss–Jordan algorithm and uses binary arithmetic to

reduce computational time. This algorithm provides fast and

accurate results for all 38 structures to which it was applied.

This approach reduces the running time by an average of 34

times in comparison to the integer programming approach.

Most importantly, the computation time depends only on the

size of the structure and no longer depends on the selection of

origin. In particular, a global optimum of the minimal prin-

ciple model is obtained in OðM2TÞ time. We also propose a

Gaussian elimination algorithm that combines a sparse matrix

implementation with the Markowitz pivot selection rule that

preserves sparsity. Compared to the Gauss–Jordan variant, the

sparse implementation is somewhat faster in practice because

it minimizes fill-in. More importantly, it reduces drastically the

computer memory requirements.

When applied to truncated reflection data for eight struc-

tures from the literature, the binary Gauss–Jordan poly-

nomial-time algorithm, in conjunction with the CRUNCH

peak-picking procedure, was able to solve structures for

resolutions of up to 1.3 Å. Our algorithms also provided much

better crystallographic R values than SHELXS on all 38

structures that we tested.

In crystallographic computing practice with small mol-

ecules, a ratio of N : M : T ¼ 1 : 10 : 100 is commonly used.

Then, our OðM2TÞ algorithms require OðN3Þ operations. Even

if M is increased in proportion to N2, the proposed algorithms

are still polynomial in N and require OðN6Þ operations.
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Table 5
R values and fraction of independent atoms identified (k) at different resolutions.

Resolution

0.9 Å 1.0 Å 1.1 Å 1.2 Å 1.3 Å

Structure R k R k R k R k R k

1 0.07 61/61 0.07 61/61 0.07 61/61 0.07 61/61 0.18 60/61
2 0.14 37/37 0.14 37/37 0.14 37/37 0.14 36/37 0.21 24/37
3 0.04 19/19 0.06 19/19 0.06 19/19 0.06 19/19 0.25 16/19
4 0.04 24/24 0.04 24/24 0.04 24/24 0.04 23/24 0.18 9/24
5 0.06 42/42 0.06 42/42 0.07 42/42 0.07 40/42 0.18 18/42
6 0.08 37/37 0.08 37/37 0.08 37/37 0.38 18/37 0.37 7/37
7 0.08 55/55 0.11 55/55 0.14 54/55 0.14 32/55 0.15 17/55
8 0.11 73/75 0.11 73/75 0.10 73/75 0.11 73/75 0.19 11/75

Table 6
CPU s and crystallographic R values for PA2 and SHELXS.

CPU s Crystallographic R

Structure PA2 SHELXS PA2 SHELXS

1 4 2 0.09 0.21
2 3 1 0.14 0.41
3 1 1 0.05 0.17
4 2 4 0.04 0.18
5 1 1 0.06 0.21
6 2 1 0.13 0.18
7 3 6 0.06 0.27
8 6 6 0.19 0.25
9 2 1 0.08 0.16

10 6 2 0.10 0.21
11 2 1 0.06 0.20
12 1 1 0.10 0.21
13 2 1 0.05 0.33
14 1 1 0.04 0.22
15 4 7 0.11 0.18
16 3 1 0.19 0.28
17 3 1 0.14 0.20
18 2 1 0.25 0.26
19 12 10 0.12 0.41
20 8 8 0.14 0.20
21 4 3 0.07 0.19
22 3 2 0.15 0.22
23 10 3 0.15 0.23
24 3 2 0.05 0.18
25 2 3 0.04 0.18
26 3 5 0.08 0.22
27 3 4 0.03 0.18
28 2 5 0.03 0.17
29 1 1 0.13 0.20
30 2 4 0.06 0.17
31 1 4 0.14 0.24
32 5 5 0.17 0.45
33 10 23 0.13 0.49
34 9 10 0.07 0.35
35 5 2 0.25 0.36
36 3 5 0.15 0.38
37 2 4 0.19 0.40
38 2 1 0.22 0.25

Min. 1 1 0.03 0.16
Max. 12 23 0.25 0.49
Average 4 4 0.11 0.25
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